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of the Pöschl–Teller system in the light of the Lamé
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Abstract
A hidden nonlinear bosonized supersymmetry was revealed recently in the
Pöschl–Teller and finite-gap Lamé systems. In spite of the intimate relationship
between the two quantum models, the hidden supersymmetry in them displays
essential differences. In particular, the kernel of the supercharges of the
Pöschl–Teller system, unlike the case of the Lamé equation, includes
nonphysical states. By means of the Lamé equation, we clarify the nature
of these peculiar states, and show that they encode essential information not
only on the original hyperbolic Pöschl–Teller system, but also on its singular
hyperbolic and trigonometric modifications, and reflect the intimate relation of
the model to a free-particle system.

PACS number: 11.30.Na

1. Introduction

Both on the classical and quantum levels, symmetries are behind the special properties of the
systems. Sometimes symmetries appear in a hidden form like it happens, for instance, in
the case of a spontaneously broken symmetry. Another, well-known mechanical example is
provided by the model of hydrogen atom being the quantum analog of the Kepler problem,
in which a hidden symmetry associated with the Laplace–Runge–Lenz vector underlies a
specific degeneration of the spectrum [1]. Recently, it was found [2, 3] that some well-studied
quantum mechanical systems exhibit a bosonized supersymmetry [4] in a hidden form. The
hidden supersymmetry manifests explicitly the main characteristics of the systems and may
have a linear, or nonlinear [5] character. Hidden supersymmetry of a linear form appears in
the bound state Aharonov–Bohm effect and the Dirac delta potential problems [2]. The pure
bosonic quantum Pöschl–Teller (PT) [2] and Lamé [3] systems display hidden supersymmetry
of a nonlinear form.
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The PT and Dirac delta quantum problems are special limits of the Lamé equation.
In the form of the periodic quantum problem, the latter system underlies diverse models and
mechanisms in field theory [6, 7], nonlinear wave physics [8], cosmology [9], condensed matter
physics [10–12] and statistical mechanics [13]. A Jacobian form of Lamé equation [14, 15]
usually used in physics is

H L
j � = 0, H L

j = − d2

dx2
+ j (j + 1)k2 sn2(x, k) + c, (1.1)

where sn(x, k) ≡ sn x is the Jacobi elliptic sine function, k, 0 < k < 1, is the modular elliptic
parameter, while j and c = c(j, k) are real constants. Equation (1.1) can be treated as a
Schrödinger one-dimensional equation with a doubly periodic potential, in which −c has a
sense of an eigenenergy.

When the modular parameter takes its limiting values, we obtain two different systems. For
k = 0 (and finite j ), the potential term disappears from H L

j and the Hamiltonian corresponds to
a free particle. Meanwhile in the limit k = 1, the real period of the potential turns into infinity,
and (1.1) is reduced to the Pöschl–Teller system, H L

j → H PT
j = − d2

dx2 − j (j + 1) sech2x + c′.
Since the periods of the elliptic function sn2 x are 2K and 2iK′, while sech2x has the imaginary
period iπ , the potential of the Lamé system can be treated as a certain periodic superposition
of the PT potentials [16],

H L
j = − d2

dx2
− j (j + 1)

( π

2K′
)2 ∞∑

l=−∞
sech2

( π

2K′ [x − 2l K]
)

+ j (j + 1)
E′

K′ + c. (1.2)

What makes the Lamé and Pöschl–Teller models to be particularly interesting are those
remarkable properties appearing when the parameter j takes integer values n (for the sake of
definiteness we assume n = 1, 2, . . .). For these special values the Lamé equation describes
a finite-gap quantum periodic system, while the PT system is reflectionless.

Behind these special properties, there emerges the hidden nonlinear supersymmetry. For
j = n, both systems have nontrivial integrals of motion in the form of differential operators
of order 2n + 1. These corresponding odd integrals of motion, QL

n and QPT
n , together with

reflection (being an obvious symmetry) play the role of the supercharge and grading operators
of the hidden nonlinear supersymmetry [2, 3].

Though the nonlinear supersymmetry in both models has a somewhat similar structure,
there are essential differences between its realizations. In both systems all the physical singlet
states are annihilated by the supercharges, but in the PT, unlike the Lamé case, the supercharge
has also non-normalizable, nonphysical (formal) zero modes. This difference is reflected
in the nonlinear superalgebraic structure. The square of the supercharge in both systems
gives a polynomial of order 2n + 1 in a corresponding Hamiltonian operator. For (1.1), we
get the spectral polynomial with all the roots to be simple and equal to the energies of the
edges of the allowed bands. However, for the PT system, the polynomial has n double roots
associated with the bound states, while one simple root corresponds to the lowest, singlet state
of the continuous spectrum. Having in mind these nonlinear superalgebraic relations between
corresponding supercharges and Hamiltonians, in Lamé (L) and PT systems with j = n we
deal, respectively, with nondegenerate and degenerate hyperelliptic curves of genus g = n,

L: y2 =
2n+1∏
k=0

(z − zk), PT : y2 = (z − z2n+1)

n∏
k=0

(z − zk)
2, zk �= zk′ . (1.3)

The existence of these differences gives rise to the following questions: what is the
relation between the two systems from the point of view of the hidden supersymmetry, and, on
the other hand, if the supercharges are fundamentals objects that contain all the information
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on the systems, what is the origin and nature of nonphysical states from the PT supercharge
kernel? It is the purpose of the present paper to answer these questions.

The paper is organized as follows. In section 2 the hidden nonlinear supersymmetric
structure of the PT and Lamé systems is reviewed, and the structure of their supercharge
kernels and relation between them is discussed. In section 3 the nature of non-normalizable,
nonphysical states of the PT supercharge kernel is clarified, and their origin in the light of the
Lamé equation is investigated. We conclude in section 4 with a brief summary.

2. Hidden supersymmetry of the Lamé and PT systems

A part of the spectrum of the Lamé and PT systems with j = n is doubly degenerated. For
(1.1) this corresponds to the energies of the quasiperiodic (Bloch–Floquet) states of the internal
part of the valence and conduction bands, while in the PT system these are the energies of
the scattering states (except the lowest one). Double degeneration of the energy levels is a
characteristic feature of the N = 2 supersymmetry generated by two supercharges. On the
other hand, there are 2n + 1 singlet states corresponding to the edges of the allowed bands in
the Lamé system, and n + 1 singlets corresponding to n bound states plus one nondegenerate
lowest state of the scattering sector in the PT system. In both cases, the number of singlet
states is greater than 1, that is typical for the nonlinear supersymmetry [5, 17].

The nonlinear supersymmetry in both systems is generated by the local, QL,PT
n = Qn, and

nonlocal (due to a nonlocal nature of R), Q̃n = iRQn, supercharges

[Qn,Hn] = [Q̃n,Hn] = 0, {Qn, Q̃n} = 0, (2.1)

Q2
n = Q̃2

n = P2n+1(Hn), (2.2)

where P2n+1(Hn) is a polynomial of order 2n + 1 in Hamiltonian Hn = H L,PT
n and R is

the reflection operator R�(x) = �(−x) identified as the grading operator, [R,Hn] =
0, {R,Qn} = {R, Q̃n} = 0, R2 = 1. From the structure of the nonlocal supercharge Q̃n

it is clear that its kernel coincides with that of the local supercharge Qn.
The 2n + 1 nondegenerate states of the edges of the allowed bands of system (1.1) are

given by the Lamé polynomials [14, 15] of the form

snrx cnsx dnt xFp(sn2 x), (2.3)

where Fp(sn2 x) is a polynomial of order p in sn2x, r, s, t = 0 or 1 and r + s + t + 2p = n.
The states (2.3) are annihilated by QL

n , and thus form the supercharge kernel KL
n = ker QL

n .
For n = 0, the Lamé system reduces to a trivial case of a free particle, and the momentum

operator QL
0 = −iD,D = d

dx
, is identified as a supercharge. The first nontrivial case

corresponding to n = 1 is characterized by the supercharge

iQL
1 = D3 + f D + 1

2f ′, (2.4)

where f ′ = d
dx

f and f is a doubly periodic function being, up to a shift of the argument, the
Weiesstrass elliptic ℘-function with periods ω1 = 2K and ω2 = 2iK′,

f := 1 + k2 − 3k2 sn2 x = −3℘(x + iK′). (2.5)

The supercharge for an arbitrary even (odd) n is constructed recursively via QL
0

(
QL

1

)
,

QL
n = �nQ

L
n−2, n > 1, (2.6)

where �n is a differential operator of order 4,

�n = D4 + [2n(n − 1) + 1]f D2 +
[

4
3 (n − 1)

(
n − 1

2

)(
n + 3

2

)
+ 1

2

]
f ′D

+ (n − 1)2
[

2
3

((
n + 1

2

)2
+ 1

2

)
f ′′ + n2f 2

]
. (2.7)
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Though the Lamé polynomials (2.3) as well as the corresponding energies EL
n,l of the band

edges can be found in an analytic form for n � 8 [18], in correspondence with the recurrent
structure of the supercharges, their kernels can be presented explicitly in general case in terms
of monomials in sn x, cn x and dn x [3],

KL
n = {

KL
n−2, dnn x, cn x dnn−1 x, sn x dnn−1x, cn x sn x dnn−2x

}
, n > 1, (2.8)

where KL
0 = 1,KL

1 = {dn x, cn x, sn x}. The monomial elliptic functions of the kernel are
certain linear combinations of Lamé polynomials.

The square of the supercharge (2.2) is given by the Lamé spectral polynomial

P L
2n+1

(
H L

n

) =
2n∏
l=0

(
H L

n − EL
n,l

)
, (2.9)

where EL
n,l, l = 0, . . . , 2n, are the eigenvalues of the edges of the allowed bands.

The limit k = 1 preserves the hidden supersymmetry and transforms the periodic finite-
gap Lamé equation (1.1) into a reflectionless Pöschl–Teller system

H L
n −→

k=1
H PT

n = −D2 − n(n + 1)sech2x + n2 = D†
nDn, (2.10)

where Dn = −D
†
−n = d

dx
+ n tanh x. The states

ψn,l = Dl
−n coshl−n x, l = 0, 1, . . . , n, (2.11)

with

D0
−n = 1, D1

−n = D−n,

Dl
−n = D−nD−n+1 . . . D−n+l−1, l = 2, . . . , n, (2.12)

represent n bound states corresponding to l = 0, . . . , n − 1, while the state with l = n is the
lowest state from the continuous part of the spectrum. Their energies are given by

EPT
n,l = n2 − (n − l)2, l = 0, . . . , n. (2.13)

A specific choice of the constant shift in (2.10) corresponds to the zero energy value of the
ground state ψn,0. These n + 1 singlet eigenstates of the Hamiltonian constitute a part of the
kernel KPT

n = ker QPT
n of the supercharge. The latter can be obtained directly from (2.6) by

taking the limit k = 1. This supercharge can be represented in a more elegant form [2],

QPT
n = iD−nD−n+1 . . . Dn. (2.14)

Its square gives a corresponding polynomial (2.2),

P PT
2n+1

(
H PT

n

) = (
H PT

n − EPT
n,n

) n−1∏
l=0

(
H PT

n − EPT
n,l

)2
. (2.15)

This polynomial is a k = 1 limit of the Lamé spectral polynomial (2.9), but unlike
the latter, it has n double roots corresponding to the singlet bound states energies, while
its one simple root corresponds to the energy of the singlet lowest state from the continuous
spectrum. All the associated n+1 singlet eigenstates (2.11) are annihilated by the supercharge.
However, supercharge (2.14) is the differential operator of the order 2n + 1, and its complete
kernel (without taking into account the question of normalizability of the states) of dimension
2n + 1 is given recursively as

KPT
n = {

KPT
n−2, cosh−n x, cosh−n x sinh x, coshn−2 x sinh x, coshn x

}
, n > 1, (2.16)

where KPT
0 = 1,KPT

1 = {sech x, tanh x, cosh x}. It is spanned by the states

KPT
n = {coshs x sinhr x, s = −n,−n + 2, . . . , n − 2r, r = 0, 1}, (2.17)
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and can be rearranged as follows:

KPT
n = {

K̂PT
n , κPT

n , K̃PT
n

}
, dim K̂PT

n = dim K̃PT
n = n, dim κPT

n = 1. (2.18)

Here K̂PT
n corresponds to the normalizable (with respect to the ordinary scalar product on R

1)
functions

K̂PT
n = {coshs x sinhr x, r = 0, 1,

{
s = −n,−n + 2, . . . ,−2, n = 2m > 0

s = −n,−n + 2, . . . ,−(2r + 1), n = 2m + 1

}
,

(2.19)

being linear combinations of the n bound states, while

κPT
n =

{
1, n = 2m,

tanh x, n = 2m + 1

}
(2.20)

are linear combinations of the singlet scattering state ψn,n and bound states ψn,l, l =
0, . . . , n − 1. These are the n + 1 states corresponding to the k = 1 limit of the supercharge
kernel (2.8) of the Lamé system, KL

n −→
k=1

{
K̂PT

n , κPT
n

}
. In this limit, the period of the Lamé

equation tends to infinity, the valence bands shrink, and two edge states (and their energies)
of the same band converge smoothly in one bound state (and corresponding energy) of the
Pöschl–Teller system. The states of the continuous band of (1.1) in this limit are transformed
into the states of the continuous spectrum of (2.10), and the singlet edge state of the conduction
band is transformed into the first (lowest) singlet state of the continuous spectrum. From
another point of view, since in the limit k = 1 Jacobi functions cn x and dn x are reduced
to the same function sech x, two different Lamé polynomials are transformed into the same
function in terms of associated Legendre functions of the variable tanh x [15].

Therefore, from the point of view of the k = 1 limit of the Lamé system, the origin of
the non-normalizable nonphysical states coshs x, s � 1, and coshs ′

x sinh x, s ′ � 0, from the
n-dimensional subspace K̃PT

n of the total kernel KPT
n of the Pöschl–Teller supercharges seems

to be mysterious.

3. The nature and origin of K̃PT
n

Before investigating the question on the origin of the non-normalizable nonphysical states of
the supercharge kernel from the point of view of the associated Lamé system, we clarify their
nature within the framework of the Pöschl–Teller system itself.

First we note that the states of the complete kernel (2.17) with the same parity but different
values of the parameter s can be related by the Hamiltonian operator

(Hn − En,n−|s+r|) coshs x sinhr x = Cs,n coshs−2 x sinhr x, (3.1)

where s = −n,−n + 2, . . . , n − 2r, Cs,n = s(s − 1) − n(n + 1) and En,l = EPT
n,l are the

energies given by equation (2.13). On the other hand, all the physical singlet states (2.11)
(both from the bound and continuous parts of the spectrum) can be produced by the action of
the polynomial in Hamiltonian operator on the states of the supercharge kernel belonging to
K̂PT

n or κPT
n ,

1
2 (n−l)−1∏
s=0

(Hn − En,2s+r ) cosh−l x sinhr x = ψn,n−l+r (x), (3.2)

where l = n−2, n−4, . . . , 2r for even n, and l = n−2, n−4, . . . , 1 for odd n, with r = 0, 1.
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Combining relations (3.1) and (3.2) we conclude that any physical singlet state can be
obtained from any nonphysical (exponentially increasing) state (2.17) of the supercharge
kernel by applying to it a certain polynomial operator in the Hamiltonian.

The states of the complete supercharge kernel (2.17) have also the following property.
Let us identify their logarithmic derivatives

W0,s = − d

dx
ln(coshs x) = −s tanh x, W1,s = − d

dx
ln(coshs sinh x) = W0,s − coth x,

(3.3)

as superpotentials in the sense of a usual linear supersymmetry and construct the corresponding
superpartner Hamiltonians H±

r,s = −D2 + W 2
r,s ± W ′

r,s , where we assume that s ∈ Z. Then we
get

H +
0,s = −D2 − s(s + 1) sech2 x + s2, H−

0,s = H +
0,s−1 + 2s − 1, (3.4)

H +
1,s = −D2 − s(s + 1) sech2 x + (s + 1)2 + 2 cosech2 x, H−

1,s = H +
0,s−1 + 4s. (3.5)

Since H +
0,s = H−

0,−s , from the point of view of such a construction both physical and nonphys-
ical states of the complete kernel of the supercharge are, in fact, equivalent, and every time we
produce either a (shifted) reflectionless Pöschl–Teller system with the corresponding value of
the constant parameter, or a free particle

(
H +

0,0,H
−
0,1,H

−
1,1

)
, or the generalized Pöschl–Teller

system
(
H +

1,s

)
[19]. In particular, note that the states cosh±n x generate exactly the ‘parent’

system given by H +
0,n = H−

0,−n = H PT
n . From relations (3.4) it also follows the well-known

fact lying behind the reflectionless property: the supersymmetric partner of the PT system
with n = 1 is a free particle, while the PT system with j = n > 1 is related to a free particle
via usual, linear supersymmetry in n steps [19].

Taking into account the relations H +
0,s−1 coshs x = (1 − 2s) coshs x,

H +
0,s−1(coshs x sinh x) = −4 coshs sinh x, and H +

0,−s = H +
0,s−1 + 2s − 1, we get

H PT
n cosh−n x = 0, H PT

n (cosh−n sinh x) = (2n − 1) cosh−n x sinh x, (3.6)

H PT
n−1 coshn x = −(2n − 1) coshn x, H PT

n−1(coshn x sinh x) = −4n coshn x sinh x. (3.7)

While two physical states from (2.17) with s = −n, r = 0, 1 are the first (ground) and the
second singlet eigenstates of the system H PT

n , other physical states of the kernel (2.17) are the
first and the second singlet eigenstates of the PT systems H PT

s with corresponding values of
the parameter 0 < s < n. Moreover, according to equation (3.7), the nonphysical states of
the kernel KPT

n can also be identified as non-normalizable eigenstates of the Pöschl–Teller (or
shifted free particle) systems with corresponding negative eigenvalues.

Let us apply a Wick rotation to the PT potential to see further evidence for the importance of
the nonphysical states of the PT supercharge kernel. The rotation can be realized by ‘restoring’
a frequency parameter ω in the potential term, H PT

n = −D2 − n(n + 1)ω2 sech2 ωx + n2ω2,
subsequent substitution ω → iω, and then putting again ω = 1. In this way, we get the
trigonometric Pöschl–Teller system, H PT

n → H̃ PT
n = −D2 + n(n + 1) sec2 x − n2. Under

such a procedure, nonphysical states coshn x and coshn x sinh x are transformed into the
trigonometric counterparts cosn x and cosn x sin x belonging to the kernel of the transformed
supercharge operator. But now they are physical states of the trigonometric PT system with
j = n − 1, which, in correspondence with equation (3.7), are the two first (lower) eigenstates
of the H̃ PT

n−1. Analogously, other nonphysical states of the supercharge kernel of the hyperbolic
PT system are transformed into physical states of the supercharge kernel of the trigonometric
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Lamé Shifted Lamé

relleT-lhcsöP Free particle

x ↔ x + K

Supersymmetric partners in various steps

PT k = 1
k = 0

k = 0, 1

Figure 1. The relationship between PT, Lamé and free particle systems.

PT system. On the other hand, normalizable states from the physical part of the supercharge
kernel are transformed into nonphysical states (which violate necessary boundary conditions
at x = ±π/2) of the trigonometric PT supercharge kernel.

Let us return to the Lamé system. As we have seen, the limit k = 1 produces from the
Lamé supercharge kernel only the physical states of the Pöschl–Teller supercharge kernel.
We shall show that nonphysical states of the PT supercharge kernel can also be obtained in
the same limit proceeding from the Lamé system. For this we note that due to periodicity,
a constant real shift of the argument in the Lamé Hamiltonian results just in a shift of the
potential along a real line, but does not change the spectrum of the system and its special
properties. With this observation, let us shift the argument for a half of the real period of the
potential [20], x → x + K,

H L
n −→

x=x+K
HL+K

n = −D2 + n(n + 1)[1 − k′2 dn−2(x, k)] + c. (3.8)

Shifting the argument in the corresponding formulas for the Lamé system, we get the
supercharge QL+K

n for system (3.8) and its corresponding kernel KL+K
n . The difference of

the shifted system (3.8) in comparison with the original one (1.1) is that in both limits k = 0
and k = 1 it transforms into the free particle but with different additive constants. The
relationship between PT, Lamé and free particle systems is summarized in figure 1.

In the limit k = 1, Hamiltonian (3.8) and the supercharge QL+K
n are transformed into

H free
n = −D2 + n2 (3.9)

Qfree
n = −iD(D2 − 12) · · · (D2 − (n − 1)2)(D2 − n2). (3.10)

Operator (3.10) is obviously an integral of motion, which is reduced to a polynomial
of order n in Hamiltonian (3.9) multiplied by D. Its kernel is spanned by the functions
cosh sx, sinh sx, s = 0, 1, . . . , n. In another form the kernel can be obtained directly from
(2.8),

KL
n −→

x=x+K
KL+K

n −→
k=1

K free
n = {

K free
n−1, coshn x, coshn−1 sinh x

}
, n > 0, K free

0 = 1.

(3.11)

The functions which belong to (3.11) are some linear combinations of non-normalizable
eigenstates of the Hamiltonian (3.9). The special feature of (3.11) is that it is composed by
functions from (2.16), in particular, by functions from K̃PT

n . Besides, (3.11) contains the

functions from K̃
PT
n+1. Supercharge (3.10) also annihilates a constant, and the structure of its

kernel (3.11) can be summarized as follows:

K free
n = {

K̃PT
n , κPT

2n , {nfunctions } ∈ K̃PT
n+1

}
. (3.12)
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KL
n KL+K

n

KPT
n

K̂PT
n κPT

n K̃PT
n

Kfree
n

K̃PT
n κPT

2n K̃PT
n+1

x ↔ x + K

k = 1 k = 1

Figure 2. Supercharge kernels of k = 1 Lamé, shifted Lamé, PT and free particle systems.

The relationship between supercharge kernels of k = 1 Lamé, shifted Lamé, PT and free
particle systems is presented in figure 2.

As an example, let us consider the simplest case n = 1, for which the Hamiltonians (1.1)
and (3.8) are

H L
1 = −D2 + 2k2 sn2 x − k2, HL+K

1 = −D2 − 2k′2 dn−2 x + 2 − k2. (3.13)

The systems have two allowed bands, and so, three energy eigenstates associated with band
edges. These states and corresponding eigenvalues are summarized in the table below:

Lamé Shifted Lamé E1,l

�1,0 dn x 1/dn x 0
�1,1 cn x sn x/dn x 1 − k2

�1,2 sn x cnx/dn x 1

(3.14)

The edge band states are zero modes of the corresponding supercharges QL
1 and QL+K

1 ,
where the latter is obtained from (2.4), (2.5) using the relation sn(x + K) = cn x/dn x. In
the limit k = 1, the Hamiltonian H L

1 is transformed into H PT
1 = −D2 − 2 sech2 x + 1. Its

unique bound state ψ1,0 = sech x originates from the states �1,0 and �1,1 of the edges of
the contracting valence band. The singlet state of the continuous spectrum, ψ1,1 = tanh x,
originates from the state of the edge of the conductance band, �L

1,2 = sn x. Together with the
non-normalizable nonphysical state cosh x, they form the kernel of QPT

1 . The Hamiltonian of
the shifted Lamé system is transformed in this limit into H free

1 = −D2 + 1, and its edge band
states (3.14) are transformed into non-normalizable states of system (3.9) with n = 1. Only
in the case n = 1 systems (1.1) and (3.8) form a pair of supersymmetric partners [20]. In
correspondence with this, in the limit k = 1 the PT system is a superpartner of a free particle.
At k = 1, the supercharge QL+K

1 is transformed into Qfree
1 = −i(D − 1)D(D + 1) = iH free

1 D,
and the physical states which form the kernel (3.11) are

K free
1 = {cosh x, 1, sinh x} = {

K̃PT
1 , κPT

2 , sinh x ∈ K̃PT
2

}
. (3.15)

The two physical states spanning the subspace
{
K̂PT

1 , κPT
1

}
of the supercharge kernel KPT

1
originate from the supercharge kernel of system (1.1). The missing non-normalizable
nonphysical zero mode cosh x ∈ K̃PT

1 is provided by the shifted Lamé system in the limit
k = 1. But the kernel K free

1 contains two more zero modes, which are also nonphysical states
and which are related to the system H PT

2 . In particular, sinh x ∈ K̃PT
2 and a constant function

from K free
1 corresponds to κPT

2 . Since dim K̃PT
2 = 2, there is a missing state to complete the

kernel K̃PT
2 . It is provided by K free

2 , and in this way one can successively continue.
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We have analysed the Lamé equation by shifting its argument in the half of the real period.
But it seems to be natural also to look what happens under shifting the argument for the half
of the imaginary period, x → x + iK′, as well as under the ‘diagonal’ shift

x → x + K + iK′, (3.16)

with taking subsequently the limits k = 0 and k = 1. The results are summarized in the
following table:

V L
n (x) V L

n (x + K) V L
n (x + iK′) V L

n (x + K + iK′)

k n(n + 1)k2 sn2 x −n(n + 1)k′2 dn−2(x, k) n(n+1)

sn2 x
n(n + 1) dn2x

cn2x

k = 1 −n(n + 1) sech2x b2
n(n+1)

sinh2 x
b4

k = 0 b1 b3
n(n+1)

sin2 x

n(n+1)

cos2 x

where bi, i = 1, . . . , 4, are some constants. These potentials correspond to the Pöschl–Teller,
free particle (bi), or Pöschl–Teller-related systems. Potentials of Pöschl–Teller-related systems
have singularities appearing from the poles of elliptic functions displaced to the real line. For all
the systems the supercharges of the hidden supersymmetry are obtained from the supercharge
(2.6) of the original Lamé system. For the systems with singular potentials supersymmetry
is of a fictitious nature [21]. In such systems, the resulting supercharges commute with
corresponding Hamiltonians, but acting on the physical states they produce non-normalizable
singular states which violate the boundary conditions, and so, are not physical states.

4. Conclusion

We have clarified the nature and the origin of the kernel of the supercharge of the hidden
nonlinear supersymmetry of the Pöschl–Teller system by investigating the k = 0 and k = 1
limits of the associated periodic Lamé, or appropriately translated Lamé equation. We have
showed that in spite of the nonphysical nature of the non-normalizable states, which constitute
a part of the kernel, they encode essential information on the original hyperbolic PT system,
and its singular hyperbolic and trigonometric modifications, and reflect the intimate relation of
the system to a free particle. In particular, it is interesting to note that under the Wick rotation,
which transforms hyperbolic PT into its singular trigonometric counterpart, and corresponds
to a diagonal translation (3.16) of the Lamé system for a half of the complex period, the nature
of physical and nonphysical states of the PT supercharge kernel is interchanged. This effect
is related to the duality in the Lamé model discussed by Dunne and Shifman [22].

To conclude, having in mind that the nonlinear superalgebraic structures, given by
equations (2.2), (2.9) and (2.15), have a form of nondegenerate and degenerate hyperelliptic
curves (1.3), it would also be very interesting to understand the essential differences between
the hidden supersymmetry (as well as its origin) in the Lamé and PT systems within the
differential geometric framework of genus n Riemann surfaces1.
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